
$\frac{\text{NOTICE}}{\text{TECHNIQUE}} \qquad \qquad \mathbf{N}^{\circ}: 02$	Date: 23/10/09	Révisée le :
---	----------------	--------------

CLUB ORION

DETERMINATION DES EFFORTS LORS DE LA ROTATION

1) <u>Introduction :</u> Nous allons considérer les efforts mis en jeu pour obtenir la rotation de l'avion, et ainsi déterminer la vitesse de rotation (pour une charge donnée). Considérons le plan cidessous où l'on a positionné les divers efforts

Au moment de la rotation, les forces en présence sont respectivement :

- Le poids total de l'avion $\mathbf{P} = 985$ kg comprenant un pilote, un copilote, et 50 litres d'essence, appliqué au centre de gravité G, situé alors à 33% de la corde de l'aile.
- Si on se réfère à l'axe de rotation des roues du train principal (point O), la distance PO est de $0.177~\mathrm{m}$.
- Le poids est équilibré par la réaction verticale \mathbf{Pr} des pneumatiques avant et principaux, qui s'applique sur la verticale de \mathbf{O} , et n'entre pas en jeu dans le moment de rotation autour de \mathbf{O} .
- La poussée **Ps** de l'hélice, que l'on a mesuré en statique (plein gaz) à l'aide d'une balance, et estimée à 240 kg. Cette force est appliquée à une distance de 1,30m. du point O.
 - La déportance due au braquage vers le haut (volant en arrière) de la gouverne de profondeur.
 - La résistance de l'air **R1** (traînée)que l'on peut calculer, sachant que :

$$\mathbf{R1} = \frac{1}{2} \mathbf{r} \mathbf{V^2} \mathbf{SCxo}$$

avec V= 125 km/h = 34,7 m/s. $S = 2,92 \text{ m}^2$ (surface frontale de l'Orion)

ORION G 801~Efforts de Rotation.doc

M. SUIRE 02 / 07 / 01

Cxo = 0.1 et $\mathbf{r} = 1.225$ kg/m3 (SCxo # 0.3 pour l'Orion dans la littérature (Hunsinger)) On trouve R1 = 215 N soit 21.5 kg

R1 = 21,5 kg

- La résistance des pneus au roulement (frottements) **R2** avec :

 $R2 = r (P-1/2rV^2S Cz)$ et r compris entre 0,02 et 0,05 sur une piste en béton.

Remarque :En fait R2 est quasiment nulle car juste avant la rotation la portance est très proche du poids.

L'avion étant en accélération, la poussée P_S est supérieure à R1, et créée ainsi un couple piqueur, à une distance de 1,30 m. du point O.

nous aurons l'équilibre suivant : (Somme des moments autour du point O – axe de rotation de la roue)

$$2,856. L = 1,3 .Ps - 1,04 .R1 + 0,177. P$$

avec Ps = 240 kg (mesuré en statique) et P = 985 kg.(1 pilote et 1 copilote)

$$2,856 L = 1,3x240 + 0,177x985 + 1,04x21,5$$

D'où L =
$$\frac{312 + 174 - 22,4}{2,856}$$
 = 162 kg L = **162 kg**

L'effort à cabrer sur la gouverne de profondeur sera de 162 kg

2) Calcul de la vitesse nécessaire pour obtenir la rotation:

Les caractéristiques de l'empennage horizontal sont :

Envergure : $\mathbf{Bh} = 3,35 \text{ m}$

Surface gouverne $Sv = 1,47 \text{ m}^2$

Surface totale **Sh**(fixe + Gouverne) = $1,71 + 1,47 = 3,18 \text{ m}^2$

Le profil de l'empennage horizontal est un NACA 009 dont la polaire est représentée sur la figure n° 2. Nous allons tracer la polaire de l'empennage pour l'allongement réel de l'empennage (rotation autour du point (0,0)).

L'allongement de l'empennage est de :

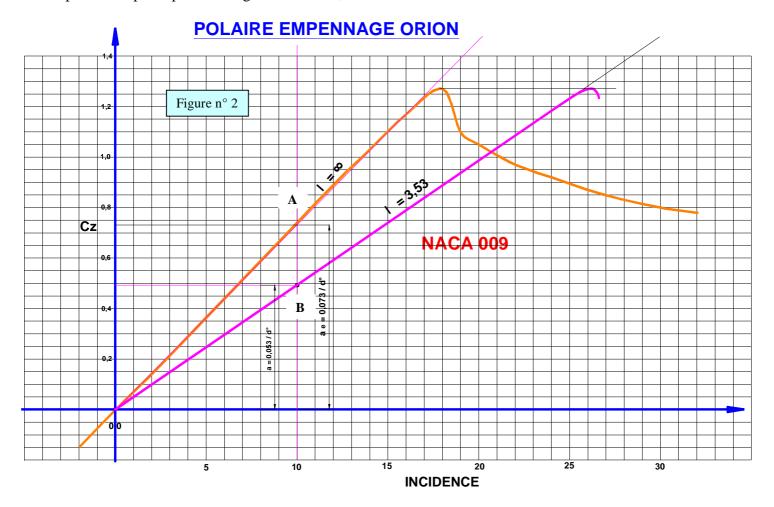
$$I = b^2/S$$
 avec $b = Envergure = 3,35 m.$
 $S = 3.18 m^2$

D'où I =
$$3,35^2/3,18 = 3,53$$
 I = $3,53$

On calcule la pente de la polaire d'allongement infini :

$$a = \frac{a_{e}}{1 + (57,3.a_{e})}$$
p. l

En relevant sur le graphique (figure n° 2) pour une incidence de 10° au point A, on trouve Cz = 0.73, donc pour 1 degré, nous aurons :


$$a e = 0.073 / d^{\circ}$$

d'où en remplaçant dans la formule ci-dessus : $a = 0.073 / 1.38 = 0.053 / d^{\circ}$

$$a = 0.053 / d^{\circ}$$

Sur la verticale passant par A,(pour 10°) on reporte la valeur a=0,53, pour obtenir le point B.

On trace ensuite une droite passant par l'origine, et par le point B de pente $0.054 / d^{\circ}$, et l'on obtient la polaire du profil pour l'allongement I = 3.53

Pour calculer la déportance de l'empennage lorsque la gouverne est braquée à fond vers le haut (lors de la rotation) soit de 22°, nous pouvons utiliser la formule de Toussaint :

$$100 \text{ Cz} = K (i + K'b) \text{ avec}$$
:

Remarque : K est la pente de la polaire soit : K = 5,3 relevé sur le graphique figure n°2

et K' est donné par la formule: K' = 1,27 \sqrt{s} (1-0,2s) avec s = Sv/Sh = 1,47/3,18 = 0,46

D'où K' = 1,27. 0,68 (1 – 0,2.0,46) = 0,78
$$K' = 0,78$$

Avec : i est l'angle d'incidence du plan fixe (0 ° pour l'Orion)

b est l'angle de braquage de la gouverne de profondeur (négatif vers le haut et positif vers le bas)

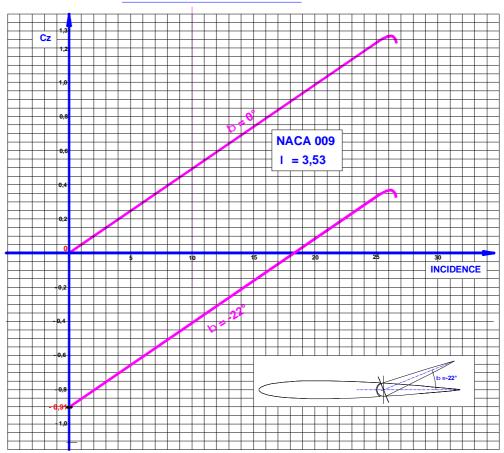
ORION G 801~Efforts de Rotation.doc

M. SUIRE 02 / 07 / 01

Il vient alors pour un braquage de 22° de la gouverne vers le haut ($b = -22^{\circ}$) et $i = 0^{\circ}$

$$100 \text{ Cz} = 5,3(-0,78 \cdot 22 \) = -5,3 \cdot 17,2 = -91,16$$
 et $\boxed{\textbf{Cz} = \textbf{-0,91}}$

La déportance sera alors :


L =
$$\frac{1}{2}$$
 r V².S.Cz avec : r = 1,225 kg/m3
S = 3,18 m²
Cz = -0,91

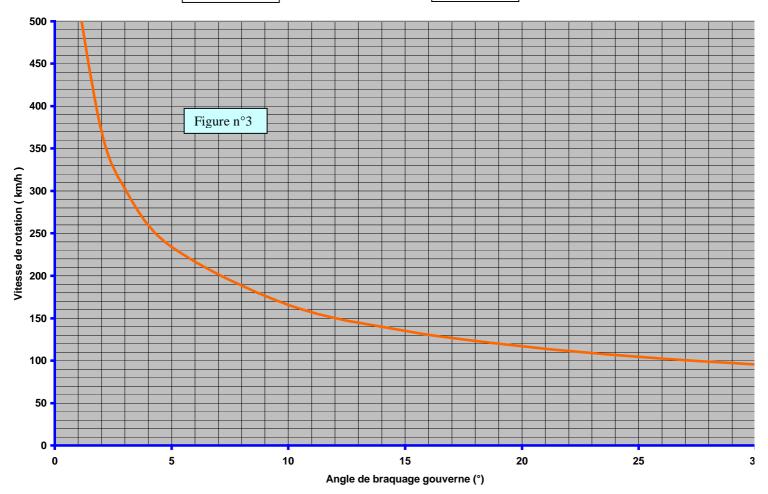
$$L = 1,77 \text{ V}^2$$

Si L = 162 kg (1620 N) on obtient : $V^2 = 1620/1,77$ et V = 30,25 m/s = 110 km/h

On devra atteindre une vitesse mini de 110 km/h pour effectuer la rotation.

POLAIRE EMPENNAGE ORION

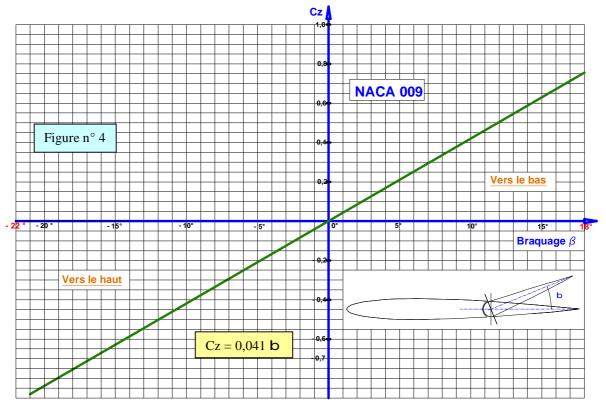
<u>Remarque</u> : On peut calculer la déportance en fonction de l'angle de braquage de la gouverne. Dans ce cas :


$$L = \frac{1}{2} \text{ r } V^{2}. \text{ S. Cz} \qquad \text{avec } \begin{cases} S = 3,18 \text{ m}^{2} \\ \text{r } = 1,225 \text{ kg/m}^{2} \\ L = 1620 \text{ N} \end{cases}$$

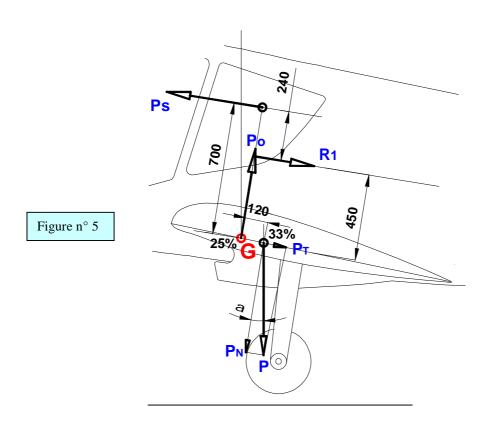
$$V^{2} = \frac{1620.2}{1,225.3,18. \text{ Cz}} = \frac{832}{\text{Cz}} \text{ D'où } V = \frac{28,84}{\sqrt{\text{Cz}}}$$

Or nous avons vu que $100 \text{ Cz} = KK'b \text{ (pour } i = 0^{\circ} \text{)}$

D'où
$$V = \frac{284,4}{2,03\sqrt{b}} = \frac{140}{\sqrt{b}}$$


Traçons la courbe $V = \frac{140}{\sqrt{b}}$ avec V en m/s ou $V = \frac{504}{\sqrt{b}}$ avec V en km/h (Voir figure n°3)

Remarque : Sachant que le calage du plan fixe de l'Orion est de 0° ($i=0^{\circ}$), nous pouvons tracer la courbe (droite) donnant la valeur du coefficient de portance Cz de l'empennage en fonction du braquage b de la gouverne de profondeur (figure n° 4).


$$Cz = 0.041$$
. b

Coefficient Cz empennage en fonction de β (Incidence plan fixe = 0°)

3) <u>Etude de la phase après rotation</u>: Tout de suite après la rotation et dès que les roues quittent le sol, l'avion a une forte tendance à cabrer, si l'on ne remet pas immédiatement la profondeur au neutre.

Ensuite, l'avion prend une pente de montée a estimée à 5°, soit cos a = 0.996 et $\sin a = 0.087$ En considérant les figures n° 5 et 6, les nouvelles forces en présence seront :

- a) Le Poids P = 985 kg qui, du fait de l'inclinaison de l'avion se décomposera en :
 - Une force $P_N = P\cos a$ perpendiculaire à la trajectoire de l'avion.

Soit
$$P_N = 981 \text{ kg}$$

- Une force $P_T = P \sin a$, parallèle à la trajectoire mais dirigée vers l'arrière.

Soit
$$P_T = 86 \text{ kg}$$

b) La portance $\hbox{\bf Po}$ perpendiculaire à la trajectoire et qui équilibre la composante $\,\,{\rm P}_{\rm N}\,{\rm du}$ poids.

Soit
$$Po = 981 \text{ kg}$$

c) La traı̂née R_1 conséquence de la portance Po et dirigée vers l'arrière. La traı̂née est donnée par la formule :

 $\mathbf{R_1} = \frac{1}{2} \mathbf{r} \ \mathbf{V^2} \ \mathbf{S} \ \mathbf{Cx}$ Le coefficient Cx comprend une partie aérodynamique (Cxo) et une deuxième partie liée à la traînée induite.

$$Cx = Cxo + \frac{1}{pA e}$$
 Cz^2
$$\begin{cases} A = \text{allongement} = 6,6 \\ e = \text{coefficient d'Oswald } \# 0,80 \end{cases}$$

Nous avons vu que Cxo = 0,1, nous allons calculer Cz sachant que :

$$Cz = \frac{P}{1/2 \text{ r S } V^2} \qquad \text{avec} \qquad P = mg = 985 \text{ x } 9,81 = 9663 \text{ N}$$

$$V = 125 \text{ km/h} = 34,7 \text{ m/s}$$

$$S = \text{Surface de l'aile} = 12,30 \text{ m}^2$$

$$Cz = \frac{9663}{9071} = 1,065$$

$$D'où Cx = 0,1 + \frac{1}{p \cdot 6,6 \cdot 0,8} \quad 1,065 \cdot 2 = 0,1 + 0,068 \quad Cx = 0,168$$

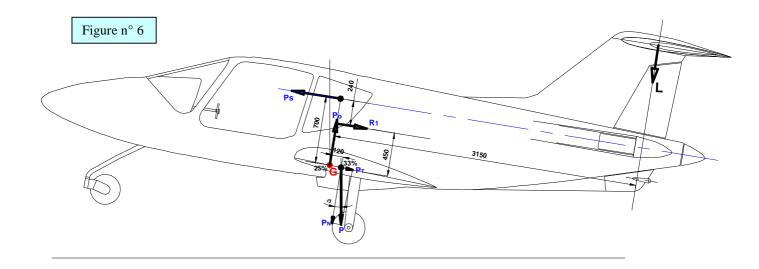
Et il vient :
$$R_1 = 0.5 \times 1,225 \times 34,7^2 \times 2,92 \times 0,168 = 361,8 \text{ N} = 36,2 \text{ kg}$$

$$\boxed{\textbf{R}_1 = \textbf{36 kg}}$$

d) Enfin, la Poussée **Ps** considéré au paragraphe 1et qui vaut 210 kg.

Nous pouvons écrire la somme des moments autour de G avec leurs signes respectifs :

Ps . 0,7 – R₁ . 0,45 – P_N . 0,12 - L . 3,15 = 0
210 . 0,7 – (36 . 0,45 + 981 . 0,12) - L . 3,15 = 0 D' où L =
$$\frac{13,1}{3.15}$$
 = 4,2 kg 3,15


Donc après la rotation, l'effort sur l'empennage nécessaire pour maintenir une pente de montée de 5 % n'est plus que de 4,2 kg, ce qui signifie pour le débattement vers le haut ,de la gouverne un angle $\mathbf{b}_{4,2}$ négatif, que nous allons calculer.

<u>Calcul de b_{4,2}</u>: Nous utilisons la formule : $L = \frac{1}{2}$ r V^2S Cz avec Cz comme inconnue. Les données sont : L = 4.2 kg = 42 N , V = 125 km/h = 34.7 m/s , et S = 3.18 m².

$$Cz = \frac{42}{0.5 \cdot 1.225 \cdot 34.7^2 \cdot 3.18} = 0.018$$

$$Cz = 0.018$$

ORION G 801~Efforts de Rotation.doc

M. SUIRE 02 / 07 / 01

En revenant à la figure n° 4, et à la formule Cz=0.041 b, nous voyons que pour obtenir un Cz de - 0.018 (déportance), il faut donner à b un angle vers le haut (à cabrer) de - 0.4° , soit quasiment un débattement nul.

M. Suire